我们的网状meta分析讲解进入深水区,有很多同学拿着代码来问我,我想说的是,代码要因数据而异,最终是要了解原理和方法学,这个需要自己深入探索。当然,我们优先选择的是用stata的频率法去实现网状meta分析,其次是winbugs,最后考虑的是gemtc。当然,猴哥推荐的还是winbugs,但这个原理复杂,model各异,学习难度高,所以对于不是专门做循证医学的同学来说,还是比较艰难,遇到具体问题时还需要修改代码。
许多同学对排序图很困惑,现简单讲一下排序图,也是本网状meta分析教程的最后一篇。
//排序图,数据请百度和google下载
use "rheumatoid arthritis mvmeta.dta", replace
//数据要整理为mvmeta格式,也就是矩阵格式
mat P = I(6) + J(6,6,1)
mvmeta y S, bscov(prop P) pbest(max,all zero gen(prob) reps(50000))
//得到排序结果,可以用graphpad画图,也可以r语言画图
----------------------------------------------------
_id and | Treatment
Rank | zero y2 y3 y4 y5 y6 y7
----------+-----------------------------------------
1 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
2 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
3 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
4 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
5 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
6 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
7 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
8 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
9 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
10 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
11 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
12 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
13 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
14 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
15 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
16 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
17 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
18 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
19 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
20 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
21 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
22 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
23 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
24 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
25 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
26 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------+-----------------------------------------
27 |
Best | 0.0 7.6 9.4 0.3 30.1 3.4 49.3
2nd | 0.0 17.2 24.0 0.8 28.8 6.5 22.6
3rd | 0.0 24.6 31.4 2.0 18.8 9.7 13.5
4th | 0.0 30.5 25.1 5.0 14.1 16.0 9.3
5th | 0.2 17.1 9.2 20.2 7.0 41.9 4.5
6th | 10.3 3.0 0.9 62.4 1.2 21.3 0.8
Worst | 89.6 0.0 0.0 9.2 0.0 1.2 0.0
----------------------------------------------------
//得到排序结果
mvmeta y S, bscov(prop P) pbest(max,zero gen(prob) reps(50000))
sucra prob*, mvmeta
. sucra prob*, mvmeta //产生累积排序图
Treatment Relative Ranking of Model 1
+--------------------------------------+
| Treatm~t | SUCRA | PrBest | MeanRank |
|----------+-------+--------+----------|
| 1 | 1.8 | 0.0 | 6.9 |
| 2 | 59.8 | 7.6 | 3.4 |
| 3 | 66.1 | 9.4 | 3.0 |
| 4 | 22.0 | 0.3 | 5.7 |
| 5 | 76.2 | 30.1 | 2.4 |
| 6 | 40.8 | 3.4 | 4.6 |
| 7 | 83.4 | 49.3 | 2.0 |
+--------------------------------------+
//排序结果,排序图,一般文章中呈现的是如下结果
. sucra prob*,mvmeta rankog
Treatment Relative Ranking of Model 1
+--------------------------------------+
| Treatm~t | SUCRA | PrBest | MeanRank |
|----------+-------+--------+----------|
| 1 | 1.8 | 0.0 | 6.9 |
| 2 | 59.8 | 7.6 | 3.4 |
| 3 | 66.1 | 9.4 | 3.0 |
| 4 | 22.0 | 0.3 | 5.7 |
| 5 | 76.2 | 30.1 | 2.4 |
| 6 | 40.8 | 3.4 | 4.6 |
| 7 | 83.4 | 49.3 | 2.0 |
+--------------------------------------+
本文由 GCBI学院 作者:其明技术专家 发表,转载请注明来源!